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INTRODUCTION

In [1] there appear equations of motion which characterize the small time-varying deforma­
tions of a distributed-mass finite element model of an elastic appendage attached to a rigid
body having arbitrary motions. Reference [2] provides the equations of motion of a dyna­
mical system of interconnected rigid bodies, each of which has attached to it a nonrigid
appendage. In concert these two references establish the basis for a generic digital computer
program to be developed for the simulation of nonrigid spacecraft. The purpose of this
note is to strengthen [1] by one subtle but significant generalization and one correction and
elaboration.

A GENERALIZATION

As shown in [1], (see equation (164), with damping excluded), if one assumes a distributed­
mass, finite-element model with mass present also in the form of rigid bodies concentrated
at each node, and chooses to characterize the unknowns as the 6n small linear and angular
deformational displacements of the n rigid nodal bodies relative to some nominal state, and
assembles these in the 6n by I column matrix q, then the ordinary differential equations of
appendage vibratory deformation have the form

M'ij + G'q + K'q + A'q = I.: (1)

where M' and K' are symmetric and G' and A' are skew symmetric matrices. If the base to
which the appendage is attached rotates at a constant rate about an inertially fixed axis,
then the coefficient matrices in equation (1) are constant, and I.: = O.

It is important in some cases to recognize that the steady state stresses in a rotating elastic
system can contribute to the skew-symmetric matrix A' by means of an asymmetric
" geometric stiffness matrix," and that the result can be the elimination of the troublesome
matrix A'. These possibilities are precluded in [I] by the seemingly insignificant assumption
that nodal body incremental rotations are sequential rotations about permanently orthogonal
axes. As a consequence of this assumption, the generalized force Qa corresponding to a
nodal body rotation f3/ of thejth body is the fla component of the torque Ii applied to the
jth nodal body, since by first principles

. cwi . .
Q = T J • --=- = T J • a = T, J (2)a - cpa - _a a
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In the general case, aQ}j/a/J~ # g~, and one must make a distinction between Q~ and T/.
(An example of this kind is shown in the following section.) The matrix designated Lin [1]
can always be interpreted as the matrix of generalized forces; only for the special case
treated explicitly in Ref. [I] is the interpretation of L as a matrix of scalar components of
force and torque for orthogonal axes (as in equation (19) of [ID a valid interpretation. Thus
we can broaden the scope of [I J(to include for example the problem in the following section)
simply by extending the meaning of L, and establishing for each problem a specific relation­
ship between Q~ and T/ A possible implication of this generalization for the geometric
stiffness matrix is established in the example following.

ILLUSTRATION OF ASYMMETRIC GEOMETRIC STIFFNESS MATRIX

Consider the rigid body B supported in a rotating housing body A by means of spring­
mounted massless gimbals B' and A', as shown in Fig. }. Note the dextral orthogonal sets of
unit vectors of corresponding labels in the figure (e.g. /2 1, /22,113 and /2 1', /22 ', /23 '), Imagine
that there exists a steady-state motion for which B maintains a fixed relationship to A, while
the mass center C of B remains fixed in inertial space and A maintains the constant inertial
angular velocity g, fixed somewhere in A but not parallel to g 1> g2' or g3' Imagine further
that in this steady state all unit vectors of like index are aligned, so that the gimbal hinge
axes are orthogonal. In this state B is rotating at a constant rate about a nonprincipal axis,
so that a body-fixed torque must be applied to B by means of the elastic springs at the
three gimbal hinge axes parallel to gl == gI" g/ == !;Jz', and b ' == /2 3 ' Rotations of the

A

Fig. 1. Rotating body B with elastic rotation constraints.
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corresponding angles from the unstressed state to the proposed steady state are designated
AI' A2 , and A3 , and the corresponding spring constants are k l , k2 , and k J , so that in the
steady state the torque applied to B is given by

To = -kl Adll - k 2 A2 !h - kJAJ!h

= -k1Atf!1 - k 2 A2 fh - k 3 A3 fh· (3)

When body B is perturbed from its steady state orientation relative to A, the expression
for the torque T applied to B becomes perhaps surprisingly complicated. If°1, °2 , 03 are
gimbal rotations from the steady state corresponding to axes parallel to fh == flI', fh' == !h',
and !!J' == !13 respectively, then the inertial angular velocity of B becomes

and our immediate knowledge of T is limited to the observations

T' gl = -k1(A I + 01)

T . g2' = -k2(A2 + (}2)

T· !h' -kJ(A 3 + OJ).

(4)

(5)

Although one can manipulate these expressions algebraically to obtain T in any vector
basis, such as gl, g2' g3, present purposes are best served by calculating first the generalized
forces

l>. OW ,
Q2 = I . 00

2
= T . g2 = -k2(A 2 + (2)

Q3 ~ I' :~ = T' !!J' = -k3(A3 + (3)' (6)

To obtain the matrix T representing T in vector basis gl' g2, g3' we can define the matrices

["'] ro~<o [:1T~ T· a .- _2' _ -2,

g3 gJ

Q~[H 9~ [::]

and write

Q CW
T

) (7)00 T
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finally inverting to obtain
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aWl OW2 OW3 -1

oel oel oel
(OWT) -1 aWl OW2 OW3 [§:lT= ae Q= ae2 ae2 ae2

In this case a little algebra provides

ill =0 + gl(el + e3 sin (J2)

+ fh(e2 cos (Jl - e3 sin (Jl cos (J2)

+ fb(e 3 cos (Jl cos (J2 + e2 sin (Jl)

so that in the linear approximation

(8)

(9)

0] -1

(Jl Q
1

(10)

or

It is perhaps more illuminating to record this result in the form

(12)

o
k2

o ~] (13)

thereby revealing the asymmetric character of the" geometric stiffness matrix" kt, induced
by the load existing in the springs in the steady state.

According to equation (60) of [IJ, the equation of rotation motion of B must be

T =fUQ + Ie + [01 - (IQ)- + IOJe + {O/O - -Ho(IQ)- + (IQ)-oJ - -HO/Q)-}8 (14)

where I is the inertia matrix of B in its own vector basis, n ~ [Q . fl 1Q . fl2 0 . fl3f, and the
tilde operator has a significance illustrated by

(15)
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Thus it follows from the existence of () :=; 0 as a steady state solution for equation (14)
that

-koll =fUO (16)

By scalar expansion of the expressions in equations (8) and (13), noting equation (10), we
find the linear approximation

which with equation (16) becomes

kt>(} = ((a~T) -1 _ U]010. (17)

(20)

(19)

(21)

It is with this interpretation that one must consider the final equations of vibration in the
form

Ie + [01 - (10)- + 10]0 + {OIO - 1-[0(10)- + (10)-0] + ko - t(010)- + kA}(} = 0 (18)

recognizing that the asymmetric form of kA retrieves the possibility that the matrix coeffi­
cient of () may be symmetric. For this illustrative example, one can extract from equation
(16) the expression

[
Ill] [(12 - 13)02o.3/k l]
8 2 ~ 8 = -ko llliO = (13 - 11)03 o.tlk2

113 (11 - 12 )0. 1 o.2 /k3
and combine this result with equation (13) to find the geometric stiffness matrix

[
0 0 0]

kA = (12-11)0.10.2 0 O.
-(11 - 13)030.1 (13- 12)02 0.3 0

By expanding other terms in the coefficient matrix of () in equation (18), one finds dramatic
simplification, and equation (18) reduces to the form

Ie + [01 - (10.)- + 10]0 + [010 - 0(10.)- - (10)-0 + koW = O.

Equation (21) has the classical form adopted by vibrating rotating systems, with the
coefficients of () and esymmetric and the coefficient of 0 skew symmetric.

The importance of this example stems from its demonstration of the possibility of retriev­
ing the symmetric form of the overall" stiffness matrix" in the final equation of vibration.
This result is reassuring, since it conforms with the fact well-known in Lagrangian mechanics
that it must be possible to structure the equations of motion of any linearized, conservative,
holonomic system so as to obtain a symmetric coefficient-matrix for the generalized
coordinates.

A CORRECTION FOR NONLINEARITIES

Reference [3] indicates the importance of retaining certain nonlinear terms in the strain­
displacement equations for the determination of the stiffness characteristics of an elastic
continuum vibrating relative to a deformed state. The second purpose of this addendum to
[1] is to indicate that these nonlinear terms were incorrectly omitted in that development,
and to show how these nonlinearities can in some cases contribute to the geometric stiffness
matrix of the finite element model.
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In [1Jthe 6 by 1 matrix of the element stresses induced by steady state rotation is denoted
ii', and the corresponding strain matrix is called ii'. The incremental (variational) stress and
strain matrices are designated ii and ii respectively. Under the restriction to small strain
(but without further restriction on deformational displacements), we can record the element
strain energy 611 as

o/i =1Iff (iiT + ii'T)(ii + e') dx dy dz

=1Iff (eT + ii'T)(ii + ii') dx dy dz

and the variational strain energy 611* (equation (21) of Ref. 1) would be

611* =1Iff [6eT(ii + ii') + (iiT + e'T)6iiJ dx dy dz.

If now we record Hooke's law in the matrix form

(J = Se

(22)

(23)

(24)

where (J and e are total stress and strain matrices, and S is symmetric, then equation (23)
becomes

611* = IfI6eT(ii + ii') dx dy dz (25)

in conformity with equation (21) of (lJ. However, in [IJ only the linear approximations of
the strain-displacement equations are substituted for e into the variational strain energy,
and this we can now recognize from [3J to be insufficient if the influences of steady state
stress on structural stiffness are to be fully accommodated. Accordingly, we now consider
the appropriate additional terms to be added to (l J.

In terms of the matrix notation of (l J, the strain displacement equations analogous to
equations (12)-(17) of [3J but descriptive of the relationship between incremental strain
matrix ii and the matrix Wof incremental displacements WI' W2 and W3 can be written as

(26)

where the operatorst D and .1. are defined in terms of local orthogonal coordinates e, 1],

and' by

alae 0 0
0 a/af! 0

DfE, 0 0 a/a,
a/of! alae 0

0 a/a, a/af!
a/a, 0 a/a~

and

~ [0 a a a a a a a a a a aJ
.1.- ae oe 2 oe af! 2 011 a, 2 -,

af! Of! a, a, a, a~

t These operators will be treated as matrices, but caution must be exercised in preserving a meaningful
sequence of operations; in equation (26), for example, the operation w~ precedes the transposition, and
such" products" as w. 2(%~)(O/o7J) are understood to mean the operator 2(OW1/O~)(olo7J)'
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(27)

Equation (26) is a nonlinear generalization of equation (14) of [1]. When this result is
substituted into equation (25), and second degree terms in ware preserved when multiplied
by the steady-state stress matrix ii', the result is the addition of the new term

y*Tkt1 Y £. y*T fWTW!lii' dvy

to the variational strain energy in equation (21) of [IJ, and correspondingly the new term
kt1 y to the expression for interaction force and torque in equation (34) of that paper. Here
y is the 6% by 1 matrix of incremental displacements of the % nodes of the finite element,
and kli is the element geometric stiffness matrix. (The existence of this matrix is noted in [l],
but no specific instructions for its construction are provided there.)

SUMMARY AND CONCLUSIONS

This addendum has had the objectives of expanding the scope of Ref. 1 and correcting a
deficiency in that work which resulted from the neglect of certain potentially significant
nonlinear terms in the strain-displacement equations. Even with the deeper appreciation of
the subtleties of the mechanics of rotating finite elements reflected in this addendum, there
remain many unanswered questions relating to the suitability of specific element models.
The next step should be the detailed evaluation of the behavior of various finite element
models of simple rotating structures, with the objective of evaluating the consequences of
modeling decisions which are routine for nonrotating systems but potentially critical for
rotating structures.
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